机器人逐步由“自动化”向“智能化”演进
器人的发展经历了三代的演进,第一代为程序控制机器人:通过编程或示教将动作指令输入机器人中,而由于缺乏外部传感器,机器人只能刻板地完成程序规定的动作,一旦环境情况略有变化,机器人的工作就会出现问题;第二代为自适应机器人:其带有视觉、力觉等传感器,能据传感器获得的信息调整工作状态;第三代为智能机器人:其拥有更丰富的传感器,不仅能获取并处理外部综合信息,甚至能据此自己制定行动目标,其智能主要体现在感知交互、独立决策、自我优化三个方面。
人形机器人:人与机器的“不期而遇”
从定义和使用目的出发,人形机器人是具有与人类似的外观和运动方式的智能机器人。人形机器人(humanoid robots)又译“仿人机器人”,字面意思是模仿人的形态和行为设计制造的机器人。目前人形机器人并没有普遍定义,但根据专业书籍《Humanoid Robots》的归纳,人形机器人应当能“在人工作和居住的环境工作,操作为人设计的工具和设备,与人交流”。在此前提下,人形机器人最终应具有与人类似的身体结构,包括头、躯干和四肢,使用双足行走,用多指手执行各种操作,并具有一定程度的认知和决策智能。
人形机器人起步于1960年代后期,以日本的研究成果最为瞩目。1973年日本早稻田大学的加藤一郎教授研发出世界上第一款人形机器人 WABOT-1 的 WL-5 号两足步行机,严格讲类属于仿生机械,是人形机器人的雏形。1986年日本本田开始进行人形机器人ASIMO的研究,并成功于2000年发布第一代机型。
机器人自主移动的感知和定位技术中激光和视觉导航是主流应用方案。计算机视觉的发展经历了基于以特征描述子代表的传统视觉方法、以CNN卷积神经网络为代表的深度学习技术,目前通用的视觉大模型正处于研究探索阶段,人形机器人的场景相对工业机器人更通用、更复杂,视觉大模型的All in One 的多任务训练方案能使得机器人更好地适应人类生活场景。
一方面,大模型的强拟合能力使得人形机器人在进行目标识别、避障、三维重建、语义分割等任务时具备更高的精确度;另一方面,大模型解决了深度学习技术过分依赖单一任务数据分布,场景泛化效果不佳的问题,通用视觉大模型通过大量数据学到更多的通用知识,并迁移到下游任务中,基于海量数据获得的预训练模型具有较好的知识完备性,提升场景泛化效果。
所有文章未经授权禁止转载、摘编、复制或建立镜像,违规转载法律必究。
举报邮箱:3031084316@qq.com